Multi-Objective Rule Mining Using Simulated Annealing Algorithm
نویسندگان
چکیده
Association rule mining process can be visualized as a multi-objective problem rather than as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the database. Confidence represents the proportion of records for which the prediction of the rule (or model in the case of a complete classification) is correct, and it is one of the most widely quoted measures of quality, especially in the context of complete classification. Interestingness measures how much interesting the rule is. Using these three measures as the objectives of rule mining problem, this article uses a Simulated Annealing algorithm to extract some useful and interesting rules from any type databases. The experimental results show that the algorithm may be suitable for large datasets.
منابع مشابه
Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملَA Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times
This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presen...
متن کاملA Simulated Annealing Algorithm for Multi Objective Flexible Job Shop Scheduling with Overlapping in Operations
In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and gla...
متن کاملOptimization of Time, Cost, and Quality in Critical Chain Method Using Simulated Annealing (RESEARCH NOTE)
In the last decade, theory of constraint application in project management lead to make a new approach for project scheduling and control as a critical chain. In this paper, a multi-objective optimization model for multi-project scheduling on critical chain is investigated. The objectives include time, cost and quality. In order to solve the problem, a Simulated Annealing algorithm is developed...
متن کاملData Mining Rules Using Multi-Objective Evolutionary Algorithms
In data mining, nugget discovery is the discovery of interesting classification rules that apply to a target class. In previous research, heuristic methods (Genetic algorithms, Simulated Annealing and Tabu Search) have been used to optimise a single measure of interest. This paper proposes the use of multiobjective optimisation evolutionary algorithms to allow the user to interactively select a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCIT
دوره 5 شماره
صفحات -
تاریخ انتشار 2010